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ON A METHOD OF SOLVING TWO-DIMENSIONAL INTEGRAL EQUATIONS 
OF AXISYMMETRIC CONTACT PROBLEMS FOR BODIES WITH COMPLEX RHEOLOGY* 

A.V. MANZHIROV 

A two-dimensional integral equatin appearing in axisymmetric contact 
problems for bodies with complex rheology is studied. A method of 
constructing the solution of this equation in proposed, based on inspecting 
the non-classical spectral properties of an integral operator. A contact 
problem for a non-uniformly aging viscoelastic foundation is solved as 
an example. 

1. Consider the integral equation 

c (f) (I - L,) q (r, t) + (I - L,) Fq (r. 1) = 6 (t) - g (4 ,(I.!) 

(I-L,;)!(t)=!(t) - ff(T)X.,(hT)dT (k = 1,2) FL. (7) = ic(p)k(n, r)r@, O<E<l 

c (1) > 0. 6 (f) c c II, 7-l: g(r) E L, (0): q(r, f)EL,(c?) ,: C[l, ?-I 

with the auxilliary condition 

P (t) = i q (r, t) r dr, P(t)sC[l,T] (1.2) 
c 

Here lik(f,r)are Volterrakernels /l/, the operator F is completely continuous, selfconjugate 
andpositive definiteandactsfrom L2(R) into L,(O),R isaregionbounded bycirclesof radii E 
and 1 (when E = 0 C! is a unit circle), and 

!. .! 
\\k2(p,r)vdrdr< 30 
;; 

(1.3) 

Wote that the kernel of the integral operator F admits of the representation /2/ 

k(r,p) = 5 i r,,P,* (r)P,,* (14 
n,=0 n=o (1.4) 

where P,,* (r) is a complete systemoffunctionsorthonormalired in L,(Q). We choose this function 
as follows (P, (3) is theLegendre polynomial): 

P,*(r)= 1/z P,('zil,2r* ) (m = 0, 1, 2, . .,) , i Pm* (r) r dr = ( [(lo, E2)‘21”z’ “, ; ; 
(1.5) 

Moreover, by virtue of (1.3) and Parseval's equation, we have 

2. Let us determine in (l.l), (1.2) q(r, i) and 6(i), assuming that the remaining 
functions are given. 

We introduce a space of functions belonging to L,(Q) and such that their integral over 
R is zero, and denote it by L,C(O). 

*Prikl.Matem.Mekhan.,49,6,1019-1025,1985 



Theorem 1. The space Lao(R) is complete Hilbert space any function of which can be 
represented by a series over the orthonormalized system of functions (1.5), beginning with the 
first. 

Let us consider the fundamental sequence {f,)E L,"(n). Since &"(R)C .&(Q), the sequence 

{f”) converges at least to fE L,(Q), i.e. 

where E,, is an arbitrarily small, previously specified positive number. We shall show that 
fE L:(R). We have 

But f is independent of n, therefore taking into account (2.1), (2.2) we obtain 

A 
fdo=O, fELz”(R) 

The assertion concerning the representation of the functions &'(a) follows from the 
properties of P,* (r) (see (1.5)). 

Theorem 2. The kernel k(p,r) can be written in the form 

k (p, r) = k" (p. r) I [2,'(1 - $)I'.* k' (r) + I', (1 - ~~)]'~*k'(p) _t 

[2.(1 - E2)] D 

k1 (r) E L," (O)_ D = const 

The proof of the theorem can be constructed using expansion (1.4), relations (l.5), 
Perseval's equation, estimate (1.6) and Theorem 1. 

We shall merely note that 

k"(p,r)= 5 f rmnP,* (P)P,* (r) 
rn=l,C=I 

(2.2) 

(2.3) 

kl(r) = z ronPn* (r), D= rOO 
n=l 

Theorem 3. The operatcr 

F” : F’,f (r) = i f (9) kc (0, r) p dp 

is completely continuous, selfconjugate and positive definite, and acts from t,"(Q) intc L,"(Q). 
Tne operator F" is se;f conj‘Jgate by virtue of (2.1!, and its complete continuity follows 

from the estimate (see (1.6)) 

{([k"(p.r)]zprdpdr= i 5 &<30 
L; m=* n=1 

while the pcsitive definrteness follows from the relation 

Theorem 4. The sequence of eigenfunctions qaO corresponding to the eigenvalues a,' (i = 1, 

2.. 1 of the operatcr F”, forms an orthononnalized basis in L,” (a). 
The theorem is a corollary of the general theory of operators in Hilbert spaces /3/. 

Theorem 5. The sequence (TAO) (i = 0, 1, 2, . .; poo = 12 (1 - E?)]'I) forms an orthonormalized 

basis in L*(R). 
We have 

_ 
f(r) = Z i,p,* (r) = f0P0* (7) -!- g fip,* (7) 

i=o i-1 

In accordance with Theorems 1, 4 and (2.41, 

(U) 
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which it was required to prove. 
Let us write the solution in the form 

(2.5) 

Substituting (2.5) into (l.l), (1.2) and taking the theorems l-5 into account, we obtain 

2, (t) = ji (t) t S li (T) Rt”(f P T, dT (i = 1, 2, . . .) 

fi (I) = - iki’(I - L2) z. (t) + g,“l’lc (4 + al”1 
6 (L) = [241 - ey’ [c (f) (I - 4) lo (t) + 

D (I - G) 20 (t) + (I - LP) igI 2, (t) ki + go”] 

z. (f) = [2/(1 - E*)l’..P (t) 

where R,"(t, T) is the resolvent of the kernel 

K,' (t, T) = Ic (1) K, (t, T) + aio K, (t, t)l.' [c (t) + ai"] 

3. Let us now assume that all functions except q(r, t) and P(t) are given. We will 
determine the remaining functions using the classica 1 method of the spectral theory of operators 
/l-3/. 

Let us write the sol?Jtion in the form 

(I (r, O= i$O @iCt) VI (r) (3.1) 

g(r) = iz; 9,Tt(G 1 = iio 6i’Fi Cr) 

where values (I, (r.) (i = 0. 1, 2,. . .I are eigenfunctions of the operator F corresponding to its eigen- 

a,. 
Substituting (3.1) into (l.l), (1.2) we obtain 

where RI (f, r) is the resolvent of the kernel 

Ki (1, T) = (C (t) K, (1. 7) + ai K, (t, T)I '[c (L) + QJ 

We can prove the following theorem. 

Theorem 6. The solution of (1.1) with condition (1.2) exists in the chosen class of 
functions, is unique and can be found with prescribed accuract using the methods given. 

Unlike the well-known methods of representing the sclution in the form of a series over 

Jrn 

an orthogonal system of pclynomials or eigenfunctions of the operator F, the method of Sect.2 
enables us to avoid the need to sclve an infinite system of integral Volterra equations and to 
satisfy the auxilliary condition exactly. When the auxilliary condition (1.2) is given, the 
method of Sect.2 enables us tc construct a solution of (1.1) (when t=1, it becomes a Fredhc 
equation of the second kind) on the spectrum of the operator F (at least in the case when all 
it5 eigenvalues are simple!. The last assertion follows from the formulas of Sect.2 where the 
expansions of the solution contain only ai' different from the eigenvalues ai of the operator 
F. When the right-hand side of Eq.Cl.1) is given, we cannot construct a solution in the 
spectrum of F, which is in complete accord with the theory of integral equations (see the 
formulas of Sect.3). 

When the algorithms of Sect.1 and 2 are realized directly, it is convenient to write the 
eigenfunctions in the form of a series over the system of polynomials (1.5), followed by their 
determination using the Bubnov-Galerkin method /4/. 

It should be noted that related equations appeared in /5/. 

4. Let us now consider applications. In the creep theory of non-uniformly aging bodies 
/6, 7/ a number of axisymmetric contact problems lead tc the integral equation (1.1) with 



auxilliary condition (1.2). We shall consider one of them, 
Let us assume that a rigid stamp is impressed without friction by a force P(t) into a 

two-layer foundation consisting of a non-uniformly aging thin layer /8/ and a uniformly aging 
layer of any thickness H. The region of contact does not vary with time, and is bounded by 
circles of xadii b and a(a> b) and theform of the stamp foundation is a function of g(r). 
The thin layer of thickness h lies frictionlessly on the uniformly aging layer, the latter, 
in turn, being at rest on the non-deformable base. Using the results of /8-ll/and taking 
into account the change of variables, we have 

t* = f~~-l, T* = q-1, r* = ru-1, c = ba-’ 

x* (2) = x fzf 11-1, c (t) = 0s ha-1 e* (t - T*) Br-’ (f) 
(I* (r*, f*) = q (r. f) Bz-"(f - ?*I, s* (t*) = 6 (t) u-1 

g* (I*) = g (r) a-‘, h = Ha-‘, k* (p*, r*) = 

k (rH_l, pH-I) A*‘, P* (t') = [2x& (1 - r,)l-'P (1) 
K,* (t", T*) = K, (f - TV, T - T*) -r,, K,* (f’, T*) = 

02 (t - TJ 81 (f) e*-’ (t - ~2) %-’ (5) ~$1~ (f. 7) 

(4.*) 

iy1’ (f, 7) = h-’ ; Kl (t + x(z), 7 + x (z))dz 

e1 (1) = 0,5 E,’ (8) i(i - v12). 0* (t) = 0,s E, (t)‘(l - vS2) 

(t is the time, ? is the integration variable in real time, r is the radial coordinate, x(z) 
is a function of non-uniform aging across the depth of the thin layer, rris the increase in 
the elements of its lower face at the instant the load is applied, p is the variable of 
integration in the real length domain, qfr,t) is a function of the contact pressures, 6(t) 
is the subsidence function, K,(f,~).C~(t.r), Ei(f),vi are the creep kernels and measures, moduli 
of instantaneous elastic deformation and Poisson's ratios of the upper (i =i) and lower 
(i= 2) layer, rr is the instant of establishing the lower layer, and k(rH+, pH_l) is the 
Fredholm kernel of the contact problem), and omitting the asterisks In the notation, we arrive 
at the initial problem of Sect.2. It should be noted that for the non-uniformly aging 
viscoelastic layered foundations /'S, 11/ the problems of impressing circular and annular 
stamps must lead to the solution (l.i!, (1.2;. 

To illustrate the method, we will solve the contact problem formulated under the assumption 
that the packet of layers is made cf concrete, and its lower face is connected to a rigid 
foundation. Assuming that the elastic characteristics are contact, we take the fc:lowing 
values of the functions and parameters: 

c (1. 11 = (I (7’ ! (I - T,. q (1) = co j ‘4e-fi,r, j3 = f&Q 
! (1 - 7/ = (, _ ,%~‘-v) , i. = i.,r,, g (ri = 0, E=U 
c (I: = 0.2. i. = 2, CoE = 0..5522, AE = 4 

$ = 0, r = 0.3, & = 0.03idavs-',~;l = 0.06 days-'. 

Note that when the creep measure is given in the form ilO/ the functions :i (!i and 01 (1) 
can be found in explicit fern: using the resolvent of the Arutyunyan kernel. The form of the 
kernel of the contact problem with coupling along the lower face of the foundation, and a 
formula for the coefficients of its expansion were obtained in /ll/. 

Let us consider the case o- 6 natural and artificial non-uniform aging of the foundation, 
introducing the parameter of non-uniform aging /llf (below, we shall use the dimensionless 
values of the parameters in accordance with (4.1) 

1. Natural non-uniform aging (the growth of the elements of the upper layer decreases 
with height) 

2. Artificial non-uniform aging (the growth of the elements of the upper later increases 

with height 
O<p<l, r1 = 10 days P (1) is i - ,(l-') 

We note that both versions include, as limiting case, the cases of uniform aging of the 
packet (p = 1) characterized by its growth at the instant T, the load is applied. 
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We show in the graphs below the relations for p= 1 (uniform aging) (the solid lines), 

for p= 10 (natural non-uniform aging) (the dashed lines) and for p=O,i (artificial non- 
uniform aging) (the dash-dot lines). The lower scale of dimensionless time will always 
correspond to the dashed lines , and the upper scale to the dash-dot lines. 

‘ . 
” 0.5 F f 

- 

Fig.1 Fig.2 Fig.3 

Fig.1 shows the contact stresses q(r,r) as a function of I for F"10, r=1.5;p=o,l,f=6; 

p = 1 for the same two values of t. The latter case is shown in Fig.1 by a single solid line. 
This suggests that uniform aging of a packet does not affect the distribution of contact 
pressures under the stamp with a flat base, The stresses are independent of r1 and are determined 
by the function of the acting force P(t), i.e. at the instants of time at which P(f) has the 
same values, the distributions of the contact stresses are identical. 

Fig.2 shows the changes in the maximum and minimum values of the contact stresses with 
time, depending on the character of the aging. The sold lines are correct in both time scales 
for the reasons already explained. 

Fig.3 shows the subsidence under the stamp 6(t) as a function of time t for various cases 
of aging. The apperance of two solid lines implies the substantial influence of 'I~ on the 
subsidence d(t) when p= 1. 

The results given for the case of uniform aging can be obtained directly the correspondence 
principle /lo/. Here they are discussed only in order to obtain a more complete picture of 
the phenomena, and for comparison purposes. 

Let us state the basic conclusion arising from this point. In the case of natural non- 
uniform aging of a packet of layers the stress state under the stamp becomes more uniform with 
time, as compared with the case of uniform aging, i.e. from the point of view of stress 
concentration it improves with time. The subsidence is always greater in the case of natural 
non-uniform aging, than in the uniform case. Comparing the uniform and natural non-uniform 
aging of the foundation, we should note that the second case is characterized by a more non- 
uniform distribution (undesirable from the point of view of the concentration) of contact 
stresses and smaller values of the subsidence. 

1. 
2. 

3. 
4. 
5. 

6. 

7. 

0. 

9. 

REFERENCES 

RIESZ F. and SZOKEFALVI-NAGY B., Functional Analysis. N.Y. McGraw-Hill, 1960. 
KOIMOGOROV A.N. and FOMIN S.V., Elements of the Theory of Functions and Functional Analysis. 
Moscow, Nauka, 1976. 

KANTOROVICH L.V. and AKILOV G.?., Functional Analysis. Moscow, Nauka, 1977. 
MIKHLIN S.G., Variational Methods in Mathematical Physics. Moscow, Nauka, 1970. 
ALEKSANDROV V.M. and KOVAIENKO E.V., An axisymmetric contact problem for a linearly deformable 

foundation of general type with wear. Izv. Akad. Nauk SSSR, MlT, 5, 1978. 
ARUTYUNYAN N.KH., On the theory of creep for non-uniformly aging bodies with heredity. Dokl. 
Akad. Nauk SSSR, 229, 3, 1976. 

ARUTYUNYAN N.KH., Certain problems of the theory of creep for non-uniformly aging bodies. 
Izv. Akad. Nauk SSSR, MTT, 3, 1976. 

MANZHIROV A.V., Plane and axisymmetric problems of the action of loads on a thin, non- 
uniform viscoelastic layer, PMTF, 5, 1983. 

VOROVICH I.I., ALEKSANDROV V.M. and BABESHKO V.A., Non-classical Mixed Problems of the 
Theory of Elasticity. Moscow, Nauka, 1972. 



782 

10. 

11. 

PMM 

ARUTYUNYAN N.KH., Some Problems of the Theory of Creep. Moscow-Leningrad, Gostekhizdat, 
1952. 

MANZHIROV A.V., Axisymmetric contact problems for non-uniformly aging, layered viscoelastic 
foundations. PM?4 47, 4, 1983. 

Translated by L.K. 

U.S.s.R.,vo1.49,No.6,pp.7S2-~S6~19B5 QCZl-8928/85 $10.00+0.03 
Printed in Great Britain Pergamon Journals Ltd. 

CONTINUOUS THEORY OF DISLOCATIONS AND DISCLINATIONS 
IN A TWO-DIMENSIONAL MEDIUM* 

YU.2. POVSTENKO 

A system of equations describing mobile defects in a two-dimensional 
Cosser at continuum, i.e. in a medium whose motion is determined by the 
displacement field and rotation field independent of it, is obtained, 

The basic equations ofthe static theory /l-5/and dynamic continuous 
theory /6-12/ of defects Cdislocations and disclinations) are known for 
a three-dimensional medium, obtained by a variety of methods. A dis- 
location model of the misalignment surfaces used in describing the 
Martensitic transformations /2, 13/ is proposed. The dislocation 
representations were used in /14-16/ to describe the grain boundaries, 
and the difference dislocations within the boundaries of separation were 
studied in /17, 18/. The dislocation structure of internal boundaries 
of separation was described in /19, 20/ using the differential geometry 
characteristics (torsion and curvature tensors, non-holonomic object) of 
three-dimensional media. Surface dislocations and disclinations of the 
separate Volterra distortions-type were studied in/2l/,withliquid 
crystals and various biological objects indicated as the suitable areas 
of application of these concepts. 

1. Surface de1 operator. A surface imbedded in a three-dimensional Euclidean space 
is described by the equations I' = I'(+.~~I where ya are curvilinear coordinates on the surface. 
Henceforth, the Latin indices will take the values of 1, 2, 3, and the Greek indices values of 
1, 2. Regarding the radius vectcr r of a po int on the surface as a function of the coordinates 
y", we introduce the local tangential basis vectors ea = &a$ and the normal vector a= 
';* @a, x Bi where c=s are the compcnents cf the Levi-Civita surface vector er+~ bB aoag. 

The surface de1 operator /22/ 
rr = a%ldyQ 

enables us to define, for the tensor T, defined on the surface, the operations of surface grad, 
div and curl 

The rules of action of the surface de1 operator on the products of the quantities are 
identical to those of the three-dimensional de1 operator T=aka6r" (see e.g. /23/. Essential 
differences due tc the s?urface curvat'ure appear on the seCGnd application cf the two-dimensicnal 

de1 operator. For example, the following relations hold: 

rr x (rrTr) =~r.b.r~T~ (1.1) 

Tr.(Tr x Tr)= - 2lfn.(T, x T,i, rr-(~~.b.T,! (1.2) 

while in the three-dimensional case we have 

'c x (TT) = 0, T-(T .*- T) = 0 (1.3) 

Here b = b,gazaE is the tensor of the second quadratic form of the SUrfaCe and H=l:&,a. 
is the mean surface curvature. 

2, Defects in the three-dimensional Cosserat continuum. To order to facilitate 
the presentation of the corresponding results for the two-dimensional Cosserat Continuum, we 

shall give the basic equations for the three-dimensional medium (e.g. /24-26/). 
The non-symmetric total deformation i and flexure-torsion y. tensors are expressed in 

terms of the displacement u and rotation o vector thus 

y=ru-+gxo, xt:to 
*prikl.Matem.Mekhan.,49,6,1026-i031,1965 


